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We analyze the spectral properties of a very general two-channel fermion-boson transport model in the
insulating and metallic regimes and the signatures of the metal-insulator quantum phase transition in between.
To this end we determine the single-particle spectral function related to angle-resolved photoemission spec-
troscopy, the momentum distribution function, the Drude weight, and the optical response by means of a
dynamical �pseudosite� density-matrix renormalization group technique for the one-dimensional half-filled
band case. We show how the interplay of correlations and fluctuations in the background medium controls the
charge dynamics of the system, which is a fundamental problem in a great variety of advanced materials.
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I. INTRODUCTION

Charge transport normally takes place in some back-
ground medium. To understand how the environment affects
the moving carrier and vice versa is a difficult question and
in this generality at present perhaps one of the most heavily
debated issues in condensed matter physics. Here the term
“background” describes a variety of situations. We can think
of the motion of a hole through an ordered insulator.1 Ex-
amples are the high-Tc cuprates and the colossal magnetore-
sistive manganates, with a background of spins and orbitals,
respectively, forming a pattern of alternating order. Then, as
the hole moves, it disrupts the order of the background,
which on its part hinders the particle transfer. Nevertheless
coherent particle transport may occur but on a strongly
renormalized energy scale. The new quasiparticles formed in
the cuprates and manganates are spin or orbital polarons.2–4

Another situation concerns a charge carrier coupled to a de-
formable background. Here, if the interaction with phonons
is strong, the particle has to carry a phonon cloud through the
medium. The outcome might be a “self-trapped” small lattice
polaron.5 In this case hopping transport, accompanied by
phonon emission and absorption processes, evolves as the
dominant transport channel.

So far we have considered a single particle only. It is quite
obvious that the problem becomes even more involved if the
particle density increases. Then the interrelation between
charge carriers and background medium may drive quantum
phase transitions. The appearance of ferromagnetism in the
three-dimensional manganates, superconductivity in the qua-
si-two-dimensional �2D� cuprates, or charge-density-wave
�CDW� states in one-dimensional �1D� halogen-bridged
transition-metal complexes are prominent examples.6 In the
theoretical description of these strongly correlated systems
an additional difficulty arises: the particles which are respon-
sible for charge transport and the order phenomena of the
background are the same. As a consequence, on a micro-
scopic level, rather involved many-particle models result,
which incorporate the coupling between charge, spin, orbital,
and lattice degrees of freedom.4,7 Naturally this prevents an
exact solution of the problem even in reduced dimensions.

II. MODEL AND METHOD

A way out might be the construction of simplified trans-
port models, which capture the basic mechanisms of quan-
tum transport in a background medium in an effective way.
Along this line a quantum transport model has been proposed
recently8,9

H = − tb�
�i,j�

f j
†f i�bi

† + bj� − ��
i

�bi
† + bi� + �0�

i

bi
†bi, �1�

which mimics the correlations inherent to a spinful fermionic
many-particle system by a boson-affected hopping of spin-
less particles �tb �see Fig. 1�. In the model �1�, a fermion f i

�†�

creates �or absorbs� a local boson bi
�†� every time it hops,

which corresponds to a local excitation in the background
with a certain energy �0. Because of quantum fluctuations
the distortions are able to relax ��. A unitary transformation
bi→bi+� /�0 replaces this term by second transport channel
Hf =−tf��i,j�f j

†f i, describing unaffected fermionic transfer,
however with a renormalized amplitude tf =2�tb /�0. It has
been shown9 that coherent propagation of a fermion is pos-
sible even in the limit �= tf =0 by means of a six-step
vacuum-restoring hopping process

Ri
�6� = Li+2

† Li+1
† Ri

†Li+2Ri+1Ri, �2�

where Ri
†= f i

†f i+1bi and Li
†= f i

†f i−1bi. Note that Ri
�6� acts as

direct next-nearest-neighbor �NNN� transfer “f i+2
† f i,” in com-

plete analogy to the “Trugman path” of a hole in a 2D Néel-
ordered spin background.10

The model �1� has been solved in the single-particle sec-
tor �Ne=1� by exact diagonalization,9 using a basis construc-
tion for the fermion-boson �many-particle� Hilbert space that
is variational for an infinite lattice �N=��.11 The transport
behavior was found to be surprisingly complex, reflecting the
properties of both spin and lattice polarons in t-J- and
Holstein-type models.

For the 1D half-filled band sector �Ne=N /2�, evidence for
a metal insulator transition comes from small cluster
diagonalizations.12 Quite recently the ground-state phase dia-
gram of the model �1� has been mapped out in the whole �
−�0 plane,13 using a density-matrix renormalization group
�DMRG� technique.14 A quantum phase transition between a
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Tomonaga-Luttinger liquid �TLL� and CDW was proven to
exist. A complementary study of the dynamical properties of
the system is therefore desirable.

In the present work, we employ the dynamical DMRG
�DDMRG� method15 in order to investigate the effects of
background fluctuations and correlations on the dynamics of
charge carriers in the framework of the 1D half-filled
fermion-boson model �1�. Thereby the focus is on the wave-
vector resolves single-particle spectral function probed by
angle-resolved photoemission spectroscopy �ARPES� and on
the optical conductivity probed, e.g., by reflectivity measure-
ments.

In general the dynamic response of a quantum system
described by a time-independent Hamiltonian H is given by

the imaginary part of correlation functions of type

AO��� = lim
�→0

1

�
��0�O† �

�E0 + � − H�2 + �2O��0� , �3�

where the operator O identifies the physical quantity of in-
terest. ��0� and E0 give the ground-state wave function and
energy of H. The small �	0 shifts the poles of the related
Green’s function GO��+i�� into the complex plane.

Single-particle excitations associated with the injection or
emission of an electron with wave vector k, A+�k ,�� or
A−�k ,��, can be written in the spectral form

A
�k,�� = �
n

���n

�fk


��0��2� �� � �
� , �4�

where fk
+= fk

† and fk
−= fk. ��0� is the ground state of a N-site

system in the Ne-particle sector while ��n

� denote the nth

excited states in the Ne
1-particle sectors with excitation
energies �n


=En

−E0.

Optical excitations, on the other hand, connect states in
the same particle sector with a site-parity change. For a sys-
tem with open boundary conditions �OBC� the regular part of
the optical absorption


reg��� =
�

N
�

n

�n���n�P��0��2� �� − �n� �5�

is related to the dynamical polarizability, 
reg���=�����,
where P=−� j=1

N j�f j
†f j −1� is the dipole operator �in units of

e� and �n= �En−E0�. Then the current operator is obtained
from J=i�H , P�. Applying periodic boundary conditions
�PBC�, the optical conductivity can be calculated from


reg��� =
�

N
�

n

���n�J��0��2

�n
� �� − �n� . �6�

Note that for our fermion-boson model �1�, the current op-
erator has two contributions, J=Jf +Jb, where Jf =itf� j f j+1

† f j
− f j

†f j+1 and Jb=itb� j f j+1
† f jbj

†− f j
†f j+1bj + f j−1

† f jbj
†− f j

†f j−1bj.
The f-sum rule

Sreg��� + �D = − �Ekin/2 �7�

connects the frequency-integrated optical response Sreg���
=	0

�
reg����d�� to the kinetic energy Ekin= 1
N �0�H

−�0�ibi
†bi�0�, where the Drude part �D serves as a measure

for coherent transport. For OBC, only a D precursor exists in
the metallic region.

In the actual DDMRG calculation of spectral functions
the required CPU time increases rapidly with the number of
the density-matrix eigenstates m. Since the DDMRG ap-
proach is based on a variational principle,15 we first of all
have to prepare a good “trial function” for the ground state
with as many density-matrix eigenstates as possible. As a
rule we keep m
500 states to obtain the true ground state in
the first five DDMRG sweeps and afterwards take m
200
states for the calculation of the various spectra from Eq. �3�
with a broadening �=0.1. In order to save CPU time in the
DDMRG runs we take into account just nb=3 pseudosites. In
this case the nbth local boson pseudosite density is smaller
than 10−5. Using nb=4 this value can be reduced to 10−8
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FIG. 1. �Color online� Schematic of quantum transport in a
background medium. The background could represent a magneti-
cally, orbitally, or charge ordered lattice but also a heat bath or
certain chemical side groups. Then the proposed transport model �1�
describes a very general situation: as a charge carrier ��� moves
along a 1D transport path it creates an excitation with energy �0 �� �
in the background medium at the site it leaves or annihilates an
existing excitation at the site it enters. It is a plausible assumption
that the �de�excitation of the background can be parameterized as a
bosonic degree of freedom. In the case of spin deviations, orbital
fluctuations, or lattice vibrations, the bosons might be viewed as a
Schwinger-bosons, orbitons or phonons. Of course, any distortion
of the background can heal out by quantum fluctuations. Accord-
ingly the � term allows for spontaneous boson creation and annihi-
lation processes. The upper panel displays the single-particle case.
Depending on the model parameters quasifree, diffusive, or boson-
assisted transport takes place �Ref. 9�. The latter case corresponds,
e.g., to the motion of a hole through an ordered antiferromagnetic
insulator. The lower panel shows the half-filled band case. Here, for
spinless fermions in 1D, a repulsive Tomonaga-Luttinger liquid
evolves, provided the excitations of the background are energeti-
cally inexpensive ��0��0,c� or will readily relax ��	�c��0��. This
defines the fluctuation dominated regime. By contrast, strong back-
ground correlations, which develop for large �0 and small �� tb

tend to immobilize the charge carriers and even may drive a metal-
insulator transition by establishing CDW long-range order �Refs. 12
and 13�.
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which leads, however, not to visible change in the spectra
because the discarded weight in the DDMRG calculations is

10−3 �i.e., three orders of magnitude larger than for the
DMRG ground-state calculations�.

III. RESULTS

A. Photoemission spectrum

Let us first discuss the single-particle spectra of the trans-
port model �1� in the regime where the background is stiff,
i.e., the distortions induced by the particle hopping process
are energetically costly ��0=2�.

For very large � the free transport channel nevertheless
dominates and an almost particle-hole symmetric spectrum
�A+�k ,�−EF�
A−�k−� ,EF−��� results �see Fig. 2 upper
panels�. As � decreases, the background distortions hardly
relax. Consequently, the bosonic degrees of freedom will
strongly affect the transport. The middle panels of Fig. 2
show how, at �=0.1, strong correlations develop in the oc-
cupied states probed by photoemission �PE� for ��EF. The
introduced hole can only move coherently by the six-step

process �Eq. �2��, where in steps one-three, three bosons
were excited, which are consumed in steps four-six after-
ward. In this way the collective particle-boson dynamics
leads to a flattening of the “coherent” band for k�kF. By
contrast an additional electron, which probes the unoccupied
states in an inverse �I�PE experiment ��	EF�, can more
easily move by a two-step process, even if pronounced CDW
correlations exist in the background medium.12 The incoher-
ent parts of A�k ,�� far away from the Fermi energy EF are
caused by excitations with additional bosons involved �bear
in mind that the ground state with Ne electrons is a mul-
tiphonon state and the wave vector of the Ne
1 target state
corresponds to the total momentum of electrons and bosons�.

While for �=0.1, A�kF ,�� has finite spectral weight at EF,
i.e., the system is still metallic �albeit the TLL charge expo-
nent K� is noticeably reduced from one13�, an excitation
gap opens in the PE spectrum as � falls below a certain
critical value, provided that �0	�0,c��=0�.13 We find
�c��0=2��0.05. The lower panels of Fig. 2 show A�k ,��
for �=0.01, in the insulating regime, where a CDW with true
long-range order exists. The TLL-CDW quantum phase tran-
sition is driven by the correlations that might evolve in the
background medium at commensurate fillings. Let us empha-
size the dynamical aspect of this process: the �collective�
bosonic excitations are intimately connected to the motion of
the particles, and themselves have to persist long enough in
order to affect the many-particle state.

The ARPES spectrum for the insulating state clearly
shows the doubling of the Brillouin zone. The remaining
asymmetry with regard to the spectral weight of the absorp-
tion signals as k↔ ��−k� vanishes for �→0. Most notably
the widths of the highest PE and lowest IPE coherent bands
differ by a factor of about �tb /�0�4 since the CDW order is
restored if the injected hole �electron� is transferred to a
NNN site by a process of order O�tb

6 /�0
5� �O�tb

2 /�0��. Hence
the CDW state exhibits a correlation-induced asymmetric
band structure.12

The strong interrelation of charge dynamics and back-
ground fluctuations becomes obvious if we decrease �0 be-
low �0,c keeping �=0.01 fixed. Of course, in passing the
accompanied insulator-metal transition the PE spectrum
changes completely but the “nature” of the TLL at �0=1 is
different compared to that of the metallic state realized at
larger �0 and � as well �cf. Fig. 3 and upper panels of Fig.
2�. The single-particle spectrum for �0=1 shows sharp ab-
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FIG. 3. Density �left� and line-shape �right� plot of the A�k ,��
spectra. Again N=32 �OBC�, �=0.01, but now �0=1.
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FIG. 2. Intensity �left panels� and line-shape �right panels� of the
single-particle spectral function A�k ,�� in the half-filled band sec-
tor of the fermion-boson transport model �1� on a N=32-site chain.
The upper two rows �lower row� give DDMRG data for �=2 and
0.1 in the metallic regime ��=0.01, insulating regime�, where
�0=2. All energies are measured in units of tb. Since we apply
OBC, we use quasimomenta k=�l / �N+1� with integers 1� l�N.
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sorption signals in the vicinity of kF only. In a wide k-space
region emanating from k=0 �k=�� the PE �IPE� spectrum is
smeared out �overdamped�, i.e., here the dynamics of the
system is dominated by bosonic fluctuations.

B. Momentum distribution function

The different transport behavior becomes also apparent in
the momentum distribution function

n�k� =
1

N
�
j,l

eik�j−l��cj
†cl� . �8�

By means of DMRG, the ground-state correlation function
�cj

†cl� can be easily calculated for PBC. Figure 4 displays
n�k� for two characteristic boson energies, above and below
�0,c.

In the former case, the TLL-CDW transition causes sig-
nificant changes in the functional form of n�k�. For �	�c,
one expects an essential power law singularity at kF, corre-
sponding to a vanishing quasiparticle weight. For finite TLL
systems the difference �=n�kF−��−n�kF+�� is finite �with
�=� /66 in our case�.16 � rapidly decreases approaching the
CDW transition point with decreasing � �see data for �0=2
�red squares��. In the CDW phase the singularity at kF van-
ishes. Note that the periodicity of n�k� doubles at �=0, in
accordance with a R�6� NNN-only hopping channel. To sub-
stantiate this reasoning we have included in Fig. 4 n�k� data
calculated for the 1D Hubbard model with additional NNN
transfer t�. We see that n�k� of the fermion-boson model �1�
is in qualitative agreement with our data and previous results
for the t− t� Hubbard model,17 in particular, for the case t
=0. The upturn in n�k� for k	kF persists even in the metallic

regime as long as NNN-hopping processes triggered by the
�CDW� correlations in the background are of importance.

For �0=1 the system stays metallic for all �. Besides the
usual renormalization of n�k� with increasing correlations
�i.e., decreasing �� we find a slight upturn in n�k� for k�kf.
This might be attributed to the fact that in our model �1� a
particle injected with k= 
� is almost unaffected by bosonic
fluctuations �which holds also for the single-particle case9�.
So to speak the system behaves as a nearly perfect metal at
this point. It is worth mentioning that an increase in n�k� for
both k�kF and k�kF has also been found for the momen-
tum distribution function of the Hubbard model �with and
without magnetization� using the Gutzwiller variational
wave function.18

C. Optical response

Finally we consider the evolution of the optical conduc-
tivity going from the correlated TLL to the CDW phase at
�0=2. The corresponding optical absorption spectra are de-
picted in Fig. 5. In the metallic state most of the spectral
weight resides in the coherent Drude part. At �=1 �see in-
set�, we find �D /N�1.6, which has to be compared with
Sreg����0.2 �of course D decreases as � gets smaller�. In
this case the wave-vector resolved single-particle spectra
roughly extends from �=−6 to �=6. The regular part of the
conductivity is mainly due to excitations to the phononic side
bands appearing in the sectors with momenta far away from
kF. In the insulating region �see main panel�, the first peak at
about ��0.5 can be assigned to an optical excitation across
the gap in the �coherent� two-band structure. These excita-
tions are only accessible for �	0. Additional excitations
with higher energy occur around multiples of the boson fre-
quency, where ���0=2 sets an absorption threshold for the
�=0 case. As expected for an insulating system with OBC,
the whole spectral weight is contained in Sreg���
�−�Ekin /2. We emphasize that the CDW state in our model
contains less than one boson per site on average, unlike, e.g.,
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FIG. 4. �Color online� Momentum distribution function n�k� for
the half-filled two-channel transport model �1� with 66 sites and
PBC, as � decreases from one �a� to zero �d� at �0=1 �circles� and
2 �squares�. Triangles show n�k� for a half-filled t-t�-U model �38
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text�. In order to obtain more accurate ground-state data we use
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the Peierls insulating state in the Holstein model. That is the
CDW phase typifies rather as a correlated insulator—such as
the Mott-Hubbard insulator—and no divergence occurs at
the optical absorption threshold.19

IV. SUMMARY

In conclusion, we have determined the spectral properties
of a highly nontrivial two-channel fermion-boson transport
model for the 1D half-filled band case, using an unbiased
DDMRG technique. The background medium, parameterized
by bosonic degrees of freedom, strongly influences the
charge-carrier dynamics, as it happens in many novel mate-
rials. If the background fluctuations dominate we find diffu-
sive transport. In opposite case of strong background corre-
lations coherent quantum transport may evolve on a reduced

energy scale. These correlations can also trigger a metal-
insulator transition. The insulating CDW state has an asym-
metric band structure, leading to characteristic signatures in
the ARPES and optical response. Whether an extended
model with spinful fermions gives rise to an attractive me-
tallic phase like in the Holstein-Hubbard model20 would be
an interesting question for further research.
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